Photodegradation of 4-methylphenol on palladium phthalocyaninesulfonate functionalized mesopolymer under visible light irradiation.

نویسندگان

  • Rong Xing
  • Lin Wu
  • Zhenghao Fei
چکیده

A versatile photocatalyst has been prepared by grafting palladium phthalocyaninesulfonate (PdPcS) onto the FDU-14 mesopolymer with 3-D cubic mesostructure (FDU-14-PdPcS) via multi-step chemical modification processes. The FDU-14-PdPcS was characterized by the X-ray diffraction (XRD), diffuse reflectance UV-vis spectroscopy and inductively coupled plasma (ICP) techniques. In the photodegradation studies of 4-methylphenol, the FDU-14-PdPcS catalyst exhibited excellent visible light photocatalytic activity and reusability in the present of H(2)O(2). The photodegradation intermediate of 4-methylphenol was investigated by gas chromatoghraphy-mass spectrometry (GC-MS) technique. Quenching experiments with isopropanol, sodium azide and benzoquinone suggested that (1)O(2) and O(2)(•¯) were the prominent active species during the photodegradation process. A possible mechanism involved in the photodegradation of 4-methylphenol has also been discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of Photocatalytic Degradation Mechanism under Visible Light Irradiation on BiOBr/Ag Nanocomposite

Due to the pollution of dyeing and textile industry wastewaters in different colors and the need to remove these pollutants from the wastewaters, it is necessary to study and develop effective and efficient technology solutions required. To remove dye from aqueous solutions, photodegradation is employed as an effectively simple way. Thus, the BiOBr photocatalyst was chemically made by synthesis...

متن کامل

Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation

Photodegradation of methyl orange was investigated using synthesized TiO2:Mg2+/zeolite as the photocatalyst. The photocatalyst was characterized by X-ray, XRF, FT-IR, and SEM. The photocatalytic activities of TiO2:Mg2+/zeolite samples were evaluated in the degradation of methyl orange under visible light irradiation. The appropriate content of Mg in the composite was obtained as 4.711 wt% with ...

متن کامل

Comparison of Photocatalytic Activities of Two Different Dyes Using Pt-Modified TiO2 Nanoparticles under Visible Light

The photocatalytic degradation of Acid Red 91 (AR91) and Acid Yellow 23 (AY23) with different molecular structures and different substitute groups using Pt modified TiO2 (PtTiO2 ) nanoparticles was investigated in the presence of visible light irradiation. Pt-TiO2 nanoparticles were prepared with photodiposition method (PD) and characterized by X-ray diffraction (XRD), scanning electron microgr...

متن کامل

Immobilization of cobalt doped rutile TiO2 on carbon nanotubes walls for efficient photodegradation of 2,4-dichlorophenol under visible light

In this work, we focused on improvement of rutile-type TiO2 degradation efficiency by cobalt doping and decorating on carbon nanotubes walls (CNTs) (Co-TiO2/CNTs). We also synthesized pure TiO2, Co-TiO2 and TiO2/CNTs samples for control experiments. The textural and morphology features of the samples were characterized by a range of analyses including: XRD, FESEM/EDX. FTIR, TEM, UV-Vis DRS and ...

متن کامل

High Photocatalytic Performance in the Photodegradation of MB Dye of Photocatalytic Efficiency of ZnO/Fe3O4 and TiO2/Fe3O4 Under Visible Light Irradiation

     Zinc Oxide (ZnO) nanorods and titanium dioxide (TiO2) nanostructures thin films were prepared onto glass substrates by the chemical bath deposition (CBD) method. The ZnO was structured as nanorods (NRs) while TiO2 was formed as nanoflowers plate as confirmed by Field-Emission Scanning Electron Microscope (FESEM) images. The ZnO/Fe3O4 and TiO2/Fe3O4 nanostructures thin films were prepared v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta chimica Slovenica

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2014